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Abstract. Tn this paper, some properties of a surface exciton in polyatomic polar crystals are
studied. Effective Hamiltonians in the ground state of the surface exciton for both strong-
coupling and weak-coupling polyatomic polar crystals are obtained by the method of alinear
combination operator and simple unitary transformation. The effective mass of a strong-
coupling surface exciton is derived using a Lagrange muitiplier method. The self-trapping
energy and effective potential of the surface exciton could be written as a series in %, the
first term being proportional to «,, the coupling constant. The self-trapping energy and
effective potential contain an extra contribution due to crossed terms between the different
phonon branches. For a surface Wannier exciton the increasing part of the effective mass is
proportional to a;.

1. Imtreduction

Since Haken [1] studied the exciton in polar crystals for the first time, many researchers
have discussed the exciton but many of them mainly concentrated their attention on the
weak- and intermediate-coupling cases. In early 1976, Huybrechts [2] proposed a linear
combination operator method by which a strong-coupling polaron could be studied. Gu
and Zhang [3] discussed the internal motion of the strong-coupling exciton in polar
crystals using the method advanced by Huybrechts.

The properties of the exciton in the surface layer of crystals influence the optical
properties of the crystals very markedly. Most polar crystals are diatomic and cubic and
their crystal structure belongs to NaCl, CsCl or ZnS type. In these crystals there is one
mode of the longitudinal optical (Lo) phonon. The properties of crystals having only
one LO phonon branch have been studied by a great variety of techniques. However, a
large number of polar crystals, with several atoms per unit cell, have more than one LO
phonon branch. For example, in CuQ, [4] there are two LO phonon modes. SiO,,
GaAs, - P, and a large number of perovskites [5] (StTiO;, BaTiQ3, LINDO,, etc) have
more than two modes. In recent years the polaron problem with many Lo phonon
branches has been studied [4-6]. However, the exciton in polyatomic polar crystals has
not been investigated so far. I |7, 8] calculated the ground-state energy of the exciton
in polyatomic polar crystals by means of the perturbation method and the effective
Hamiltonian of the strong-coupling exciton in polyatomic polar crystals using a linear
combination operator method. In this paper, some properties of the surface exciton in
polyatomic polar crystals are studied by the method of a linear combination operator
and a simple unitary transformation.
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2. Hamiltonian

Theoretical results [9) show that the surface layer of crystals may be regarded as pure 2D
crystals if the distance from the surface is smaller than the radius of polarons. The effect
of bulk phonons can be neglected, while the surface phonons are taken into account in
the surface layer. In the case of many Lo phonon branches, the total Hamiltonian of the
surface exciton in polyatomic polar crystals can be written as

52 ﬁz 2
H= -2V~ v Vi - Ty Eﬁw&aaag;
+ 2 (Qlﬂ ag; exp(i@-R) E, + Hc) (1a)
Cyi = 2rie (o, /4:m g)1/2 (16)
§o = exp(=if,@ - p) — exp(if.Q - p) (1)
l/e=1/er —1/e} ef =(gq +1)/2 et = (e« +1)/2 (1d)

where M, ¢, R and p are the mass centre mass, reduced mass, 2D mass centre coordinate
and relative coordinate, respectively. aj, and ap, are the creation and annihilation
operators of the ith LO mode surface phonon with wavevector @. 8, and 8, are the
fraction of the mass of electron and hole. @ is the 2D wavevector of the surface phonon.
e, is the optical dielectric constant. £,is the static dielectric constant. w,, is the Lo surface
phonon frequency of the ith branch,

We introduce the creation and annihilation operators B* and B for the mass centre
momentum P and mass centre coordinate R by

= (MAA/2)'? (B; + B} ) (2a)
= x,

My, -8y (2b)

(B, B;‘) = aij (20)

where A is a variational parameter. Substituting (2a)-(2¢) into (14) and carrying out the
unitary transformation

% = U3 U HU, U, (3)
where
U= exp(—ia > agiagQ - R) (4a)
2.
0 = exp( 3 a0~ 2012 (46)

foi and f}; are variational parameters. @ is a parameter characterizing the coupling
strength proposed by Huybrechts, @ = 1 corresponds to the weak-coupling limit and
@ = 0 to the strong-coupling limit. Then (1) can be rewritten as
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The ground-state wavefunction of the system is © = @(p)|0) where @(p) is the
wavefonction which describes the internal motion of an exciton, |0} is the zero phonon
state, which satisfies

B,10) = 2|0) = 0. | ©)

Then the upper limit of the ground-state energy is obtained by minimizing the expec-
tational value E(A):

E(4) = (%] D) = {(p(p}| F(L) @ (p)) (7a)
H.y = min F(A) (7b)

where H.4 is called the effective Hamiltonian.
Inserting (6) into (Ta) we get
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We now discuss the two limits of strong coupling and weak coupling.
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3. Weak- and strong-coupling limits

3.1. Weak coupling

In the unitary transformation, U; with a = 1 corresponds to the weak-coupling limit.
Replacing 2, by (5/472)[5 [5Q dQ de, although the calculation is straightforward.
Equation (8) can be written as

#ih Rl e’
R = =52 V6 = 55~ 2 whooyl = 2L(p)]
d
+ 3 agton (L4 L)+ 05 1(0) ©2)
i 2 dp
where
x/2
Lip) = f exp(—uyp cos ¢) dp B | (95)
0
B =83 + £3)/28:8: uy = QMao/h)"?, (9c)
Since each term is independent of A except the first term, we have
A=0
Finally we can obtain
Hyy = —(ﬁ'z/z.u')vz — E, + Vo) (10a)
Jm's,ﬁws,
E,=2~——2-§) (108)
d
Ver =~ % shwyl3+p dp L(p). (10c)

E, is the self-trapping energy and V4 is the effective potential.

3.2. Strong coupling

In the unitary transformation, U/; with 2 = 0 corresponds to the strong-coupling limit.
Equation (8) can be written as

__ﬁ_z | Q,l |Eo!? hQ?
F(}) v2 Hﬁz 2 r exp( 2m)
[Coil*¥ §g|2 _RQ?
2:% (has)'0 ‘”‘p( _zm)' (11)

The final two terms in £(4) can be calculated by replacing the summation with integration
we have

Bl A2 e? A\ 12 2
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Kp) = f exp(—%us,p cos tp) de. {12b)

For a strong-coupling surface Wannier exciton (exp(—AuZp?/4m,) <€ 1), F(A) can be
approximately written as ‘

i &2 e A\ SV A\
O AR E S o AR

Performing the variation in (13) with respect to 4, we get

o 2 2 _
;ml+mﬁ—$$aﬁ\/w_ﬁ—0. (14)

The solution can be written as

=~1/33\/‘E

+\/%(§as, /S5e)" (141/epe S v S 3) "
. (15a)

For the strong-coupling case,
a" .
1/6 arza'-\/cos-zv—“ <1,
4 i ¥ T Vg

(15a) can be expanded as
Vim 5 (Bevoy/2) (1o V(T a2 )

+1/1zx;32‘as,.\/5;2%+,.i.). (15b)

Substituting (15b) into (12a), we have
Hep= —(B*/2u)V3 — Ey + Voe{p) (16a)
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The first term in equation {16a) is the kinetic energy of the surface exciton internal
motion. The second term is the self-trapping energy of the surface exciton, which is
induced by the interaction of the electron and hole in the exciton with the Lo phonon,

The third term is the effective interaction potential energy between the electron and
hole.

4. Effective mass

To obtain the surface exciton mass, the minimization of the energy should be performed
by constraining the total momentum operator P. This operator may be written as

P= pr+ ;ﬁgaa,‘agi. (17)
W
We now replace one of equations (2) by
= (MhA[2)'2(B; + B} + Py) (18)
where Py is an extra variational parameter. Carrying out the unitary transformation,

U=exp2 (agifoi + agif &:)- (19)
2.

The expectation value of U~'(H — u « p)Ufor the groundstate | 0), where nis a Lagrange
multiplier and will be in due course identified as the velocity of the surface exciton, is
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Performing the variation in equation (20) with respect to fp; and Py yields
for = —[ChiEp/(hoy ~ hQ - u)Q'?] exp(—RQ* /4MA) (21a)
= @M/ 2y, (21b)

Replacing the summation with integration and up to second order in the velocity u, we
get
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usr Wy

@, in (22) is the angle between p and u.

For the strong-coupling surface Wannier exciton the variational parameter A, which
is the same as equation (15b), can be obtained by the variational method, Finally, using
the variational quantities f;, Ppand A determined through equations (21) and (156), we
obtain the effective Hamiltonian of the surface exciton:

Heg = —(B2/2u)V2 + PY/2M* = E + Vo(p) (23)

where E,, and V¢(p) are the same as (16b) and (16c).
For the momentum expectation value we find
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The Lagrange multiplier # is indeed the surface exciton velocity, and the surface exciton
mass is therefore given by

1+8\/— S ;,ﬂwg,ﬂ[l-:/w—(gas,v—z ga)”
! i
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5. Resulis and discussion

The problem of the polaron in strong-coupling polar crystals is complicated, and even
more so in strong-coupling polyatomic polar crystals. Naturally, the exciton problem in
strong-coupling polyatomic polar crystals is still more difficuit. Aneffective Hamiltonian
of the ground state of the surface exciton in both strong-coupling and weak-coupling
polyatomic crystals and an effective mass of the surface exciton in sirong-coupling
polyatomic crystals have been derived using the method of alinear combination operator
and simple unitary transformation and Lagrange multiplier.

From (10b) and (10c) one can see that many Lo phonon branches in polyatomic polar
crystals influence both the self-trapping energy and the effective potential of the surface
exciton. If the interaction between the different branches of virtual phonons with
different wavevectors emitted by the surface exciton in the recoil effect is neglected, the
effects of different branches of Lo phonon-surface exciton coupling on both the self-
trapping energy and the effective potential of the surface exciton are independent of
each other. It is interesting that the effects of interaction of different branches of LO
phonons and the surface exciton on the effective potential of the surface exciton is only
felt by the final term of the potential and not by the Coulomb potential.
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The self-trapping energy (10b) depends not only on the surface exciton-phonon
interaction, but also on the relative magnitudes of the electron and hole masses. What
is more interesting is the influence of the lattice vibration on the self-trapping. The
energy of the surface exciton is changed owing to the action of the lattice vibration on
the surface exciton. The value of the surface exciton energy is lowered because of the
action of the lattice vibration when the electron and hole masses are not equal, i.e. the
self-trapping energy is

J'ra"siﬁ'wsr' _ ﬁ? + ﬁ%
2= (2 26:52 ) (26)

Equation (26) shows further that, when the mass difference between the electron and
the hole is not too large, E, can be larger than zero, and the surface exciton may be
self-trapped in the range 0.2113 < B, < 0.7886. Otherwise, when the mass difference
between the electron and the hole is large, the surface exciton may not be self-trapped
in the range 8, < 0.2113 or 8, > 0.7886. Under these circumstances, the energy of the
surface exciton is not reduced; on the contrary, because of the action of the lattice
vibration it rises. Thus the surface exciton will not be self-trapped, when the electron-
to-hole mass ratio /iy, is in the range w./w, < 0.268 or g./u, > 3.732, whereas the
surface exciton is seif-trapped when the electron-to-hole mass ratio is in the range
0.268 < p,/uy, < 3.732, i.e. the self-trapping condition for the surface exciton depends
critically on the electron-to-hole mass ratio, because the strength of the interaction of
the electron and the hole with the lattice depends on the eiectron-to-hole mass ratio.
The induced self-trapping energy also depends on this ratio.

In strong-coupling polyatomic polar crystals, the self-trapping energy (16b) and the
effective potential (16¢) of a surface Wannier exciton can be written as a series in &,
the first term being proportional to «,, the coupling constant of the surface exciton-
phonon. Not only does the self-trapping energy (165) and the effective potential (16¢)
include the coupling contribution between the electron-hole and the different Lo phonon
branches, but also there exists an extra contribution due to crossed terms between the
different branches and the different wavevector virtual phonon, which is emitted via the
excitonic recoil.

For the surface Wannier exciton, one can omit, in the screening potential (16¢)
induced by the interaction of the electron—hole with the Lo phonons due to the ionic
polarization, the included K(p) and (d/dp) K(p) terms, which are obtained via numerical
calculation, so that only the first term remains. If the effective electron-hole potential
in strong-coupling polyatomic polar crystals can be described simply by —e?/£2 p, more
satisfactory results may be obtained.

The effective mass of the surface exciton in strong—couplmg polyatomic polar crystals
isobtained by the Lagrange multiplier method. From (25), one can see that the effective
mass M* does depend on the exciton-surface optical phonon parameter a;, the electron—
hole distance p and the electron-to-hole mass ratio. For the surface Wannier exciton
in strong-coupling polyatomic polar crystals the included K(p), p(d/dp)K(p) and
(d3/dp*) K(p) terms can be omitted, and we have

= w14 Va(Z) (zasﬂwaﬂ/gwyzwgﬁ)]. @)

From (27), one can see that for the surface Wannier exciton in polyatomic polar crystals
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the increasing part of the effective mass is proportional to &, because of the strong
coupling between the electron~hole and the surface optical phonon.
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